The Selberg Trace Formula for Non-unitary Representations of the Lattice
نویسنده
چکیده
Let X = Γ\G/K be a compact locally symmetric space. In this paper we establish a version of the Selberg trace formula for non-unitary representations of the lattice Γ. On the spectral side appears the spectrum of the “flat Laplacian” ∆, acting in the space of sections of the associated flat bundle. In general, this is a non-self-adjoint operator.
منابع مشابه
The Selberg Trace Formula and Selberg Zeta-Function for Cofinite Kleinian Groups with Finite Dimensional Unitary Representations
For cofinite Kleinian groups, with finite-dimensional unitary representations, we derive the Selberg trace formula. As an application we define the corresponding Selberg zeta-function and compute its divisor, thus generalizing results of Elstrodt, Grunewald and Mennicke to non-trivial unitary representations. We show that the presence of cuspidal elliptic elements sometimes adds ramification po...
متن کاملThe Selberg Trace Formula and Selberg Zeta-function for Cofinite Kleinian Groups with Finite-dimensional Unitary Representations
For cofinite Kleinian groups, with finite-dimensional unitary representations, we derive the Selberg trace formula. As an application we define the corresponding Selberg zeta-function and compute its divisor, thus generalizing results of Elstrodt, Grunewald and Mennicke to non-trivial unitary representations. We show that the presence of cuspidal elliptic elements sometimes adds ramification po...
متن کاملOn local gamma factors for orthogonal groups and unitary groups
In this paper, we find a relation between the proportionality factors which arise from the functional equations of two families of local Rankin-Selberg convolutions for irreducible admissible representations of orthogonal groups, or unitary groups. One family is that of local integrals of the doubling method, and the other family is that of local integrals expressed in terms of sph...
متن کاملThe Selberg Trace Formula for Hecke Operators on Cocompact Kleinian Groups
We compute the Selberg trace formula for Hecke operators (also called the trace formula for modular correspondences) in the context of cocompact Kleinian groups with finite-dimentional unitary representations. We give some applications to the distribution of Hecke eigenvalues, and give an analogue of Huber’s theorem.
متن کاملStrong exponent bounds for the local Rankin-Selberg convolution
Let $F$ be a non-Archimedean locally compact field. Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$. We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$. We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$. Using the Langlands...
متن کامل